Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Clin Lab Anal ; 37(7): e24889, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-20235392

ABSTRACT

BACKGROUND: Polymerase chain reaction (PCR) has been widely used for many pathogen detection. However, PCR technology still suffers from long detection time and insufficient sensitivity. Recombinase-aided amplification (RAA) is a powerful nucleic acid detection tool with high sensitivity and amplification efficiency, but its complex probes and inability of multiplex detection hinder the further application of this technology. METHODS: In this study, we developed and validated the multiplex reverse transcription recombinase-aided PCR (multiplex RT-RAP) assay for human adenovirus 3 (HADV3), human adenovirus 7 (HADV7), and human respiratory syncytial virus (HRSV) within 1 h with Human RNaseP protein as a reference gene to monitor the whole process. RESULTS: Using recombinant plasmids, the sensitivity of multiplex RT-RAP for the detection of HADV3, HADV7, and HRSV was 18, 3, and 18 copies per reaction, respectively. The multiplex RT-RAP showed no cross-reactivity with other respiratory viruses, demonstrating its good specificity. A total of 252 clinical specimens were tested by multiplex RT-RAP and the results were found to be consistent with those of corresponding RT-qPCR assays. After testing serial dilutions of selected positive specimens, the detection sensitivity of multiplex RT-RAP was two to eightfold higher than that of corresponding RT-qPCR. CONCLUSION: We conclude the multiplex RT-RAP is a robust, rapid, highly sensitive, and specific assay with the potential to be used in the screening of clinical samples with low viral load.


Subject(s)
Adenoviruses, Human , Respiratory Syncytial Virus, Human , Humans , Respiratory Syncytial Virus, Human/genetics , Adenoviruses, Human/genetics , Reverse Transcription , Reverse Transcriptase Polymerase Chain Reaction , Multiplex Polymerase Chain Reaction , Sensitivity and Specificity
2.
Microbiol Spectr ; 10(4): e0109722, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-2325199

ABSTRACT

Human adenovirus type 26 (HAdV26) has been recognized as a promising platform for vaccine vector development, and very recently vaccine against COVID-19 based on HAdV26 was authorized for emergency use. Nevertheless, basic biology of this virus, namely, pathway which HAdV26 uses to enter the cell, is still insufficiently known. We have shown here that HAdV26 infection of human epithelial cells expressing low amount of αvß3 integrin involves clathrin and is caveolin-1-independent, while HAdV26 infection of cells with high amount of αvß3 integrin does not involve clathrin but is caveolin-1-dependent. Thus, this study demonstrates that caveolin-1 is limiting factor in αvß3 integrin-mediated HAdV26 infection. Regardless of αvß3 integrin expression, HAdV26 infection involves dynamin-2. Our data provide for the first-time description of HAdV26 cell entry pathway, hence increase our knowledge of HAdV26 infection. Knowing that functionality of adenovirus vector is influenced by its cell entry pathway and intracellular trafficking, our results will contribute to better understanding of HAdV26 immunogenicity and antigen presentation when used as vaccine vector. IMPORTANCE In order to fulfill its role as a vector, adenovirus needs to successfully deliver its DNA genome to the host nucleus, a process highly influenced by adenovirus intracellular translocation. Thus, cell entry pathway and intracellular trafficking determine functionality of human adenovirus-based vectors. Endocytosis of HAdV26, currently extensively studied as a vaccine vector, has not been described so far. We present here that HAdV26 infection of human epithelial cells with high expression of αvß3 integrin, one of the putative HAdV26 receptors, is caveolin-1- and partially dynamin-2-dependent. Since caveolin containing domains provide a unique environment for specific signaling events and participate in inflammatory signaling one can imagine that directing HAdV26 cell entry toward caveolin-1-mediate pathway might play role in immunogenicity of this virus. Therefore, our results contribute to better understanding of HAdV26 infection pathway, hence, can be helpful in explaining induction of immune response and antigen presentation by HAdV26-based vaccine vector.


Subject(s)
Adenoviruses, Human , COVID-19 , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , COVID-19 Vaccines , Caveolin 1/genetics , Caveolin 1/metabolism , Clathrin/metabolism , Dynamin II/metabolism , Humans , Integrins/metabolism , Virus Internalization
3.
Viruses ; 15(2)2023 01 24.
Article in English | MEDLINE | ID: covidwho-2307977

ABSTRACT

Human adenoviruses (HAdV) are one of the most important pathogens detected in acute respiratory diseases in pediatrics and immunocompromised patients. In 1953, Wallace Rowe described it for the first time in oropharyngeal lymphatic tissue. To date, more than 110 types of HAdV have been described, with different cellular tropisms. They can cause respiratory and gastrointestinal symptoms, even urinary tract inflammation, although most infections are asymptomatic. However, there is a population at risk that can develop serious and even lethal conditions. These viruses have a double-stranded DNA genome, 25-48 kbp, 90 nm in diameter, without a mantle, are stable in the environment, and resistant to fat-soluble detergents. Currently the diagnosis is made with lateral flow immunochromatography or molecular biology through a polymerase chain reaction. This review aimed to highlight the HAdV variability and the pandemic potential that a HAdV3 and 7 recombinant could have considering the aggressive outbreaks produced in health facilities. Herein, we described the characteristics of HAdV, from the infection to treatment, vaccine development, and the evaluation of the social determinants of health associated with HAdV, suggesting the necessary measures for future sanitary control to prevent disasters such as the SARS-CoV-2 pandemic, with an emphasis on the use of recombinant AdV vaccines to control other potential pandemics.


Subject(s)
Adenoviruses, Human , COVID-19 , Humans , Child , Adenoviridae , Pandemics/prevention & control , Friends , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Adenoviruses, Human/genetics
4.
J Pharm Sci ; 112(4): 974-984, 2023 04.
Article in English | MEDLINE | ID: covidwho-2241448

ABSTRACT

Adenovirus vectors have become an important class of vaccines with the recent approval of Ebola and COVID-19 products. In-process quality attribute data collected during Adenovirus vector manufacturing has focused on particle concentration and infectivity ratios (based on viral genome: cell-based infectivity), and data suggest only a fraction of viral particles present in the final vaccine product are efficacious. To better understand this product heterogeneity, lab-scale preparations of two Adenovirus viral vectors, (Chimpanzee adenovirus (ChAdOx1) and Human adenovirus Type 5 (Ad5), were studied using transmission electron microscopy (TEM). Different adenovirus morphologies were characterized, and the proportion of empty and full viral particles were quantified. These proportions showed a qualitative correlation with the sample's infectivity values. Liquid chromatography-mass spectrometry (LC-MS) peptide mapping was used to identify key adenovirus proteins involved in viral maturation. Using peptide abundance analysis, a ∼5-fold change in L1 52/55k abundance was observed between low-(empty) and high-density (full) fractions taken from CsCl ultracentrifugation preparations of ChAdOx1 virus. The L1 52/55k viral protein is associated with DNA packaging and is cleaved during viral maturation, so it may be a marker for infective particles. TEM and LC-MS peptide mapping are promising higher-resolution analytical characterization tools to help differentiate between relative proportions of empty, non-infectious, and infectious viral particles as part of Adenovirus vector in-process monitoring, and these results are an encouraging initial step to better differentiate between the different product-related impurities.


Subject(s)
Adenoviruses, Human , COVID-19 , Humans , Capsid/chemistry , Capsid/metabolism , Viral Proteins/analysis , Adenoviridae/genetics , Adenoviruses, Human/genetics , Genetic Vectors
5.
Virol J ; 20(1): 4, 2023 01 09.
Article in English | MEDLINE | ID: covidwho-2196351

ABSTRACT

BACKGROUND: Under the pressure of non-pharmaceutical interventions (NPIs) targeting severe acute respiratory syndrome coronavirus 2, the prevalence of human adenovirus (HAdV) was monitored before and after NPIs launched on Jan 24, 2020 in pediatric patients in Beijing, China. METHODS: Respiratory samples collected from children hospitalized with acute respiratory infections from Jan 2015 to Dec 2021 were screened by direct immunofluorescence test or capillary electrophoresis-based multiplex PCR assay. The hexon, penton base, and fiber genes were amplified from HAdV positive specimens, then sequenced. For HAdV typing, phylogenetic trees were built by MEGA X. Then clinical data of HAdV positive cases were collected. All data were evaluated using SPSS Statistics 22.0 software. RESULTS: A total of 16,097 children were enrolled and 466 (2.89%, 466/16,097) were HAdV-positive. The positive rates of HAdV varied, ranging from 4.39% (151/3,438) in 2018 to1.25% (26/2,081) in 2021, dropped from 3.19% (428/13,408) to 1.41% (38/2,689) from before to after NPIs launched (P < 0.001). There were 350 cases typed into nine types of species B, C, or E and 34 recorded as undetermined. Among them, HAdV-B3 (51.56%, 198/384) was the most prevalent types from 2015 to 2017, and HAdV-B7 (29.17%, 112/384) co-circulated with HAdV-B3 from 2018 to 2019. After NPIs launched, HAdV-B3 and B7 decreased sharply with HAdV-B7 undetected in 2021, while HAdV-C1 became the dominant one and the undetermined were more. CONCLUSIONS: The endemic pattern of HAdV changed in Beijing because of the NPIs launched for COVID-19. Especially, the dominant types changed from HAdV-B to HAdV-C.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , COVID-19 , Respiratory Tract Infections , Child , Humans , Beijing/epidemiology , Adenoviruses, Human/genetics , Phylogeny , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Respiratory Tract Infections/epidemiology , Multiplex Polymerase Chain Reaction
6.
J Virol ; 96(22): e0113322, 2022 11 23.
Article in English | MEDLINE | ID: covidwho-2108209

ABSTRACT

Human adenoviruses (HAdVs) are important tools for vector development for applications such as immunization, oncolytic therapy, or gene therapy. However, their potential is limited by preexisting immunity against HAdV; therefore, it is important for future vector design to identify HAdV types of low seroprevalence. To provide such data, we performed an analysis of both binding and neutralizing antibodies in sera from three student cohorts. Among these young adults, we found the highest levels of binding antibodies against HAdV-C1, -D33, -A31, -B35, -C5, -D26, -E4, and -B7. The highest levels of neutralizing antibodies were detected against HAdV-C2, -B3, -C1, -F41, -G52, -C5, -A31, -E4, and -C6. While binding and neutralizing antibody levels were not different in males and females or in samples collected before and after the cold season, we found significantly lower levels of binding antibodies in sera collected 20 months after the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, indicating a waning of HAdV-specific antibody responses on that time scale. Our data indicate that mainly HAdV types of species A, B, and D show low seroprevalence with regard to both binding and neutralizing antibodies and may represent good candidates for further characterization and future development as novel vector systems. IMPORTANCE Vectors based on human adenoviruses (HAdVs) are important for the development of novel immunizations, oncolytic therapies, and gene therapies. The use of HAdV-based vaccines against Ebola virus, the rapid adaptation of the vector technology for vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and their very good efficacy have shown the great potential of HAdV-based vaccines. Preexisting immunity against HAdV-based vectors can limit their efficacy significantly; therefore, it is highly desirable to identify HAdV types with low seroprevalence. The identification of new suitable HAdV types for vector development will broaden the repertoire and contribute to future epidemic preparedness.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , COVID-19 , Male , Young Adult , Female , Humans , Adenoviruses, Human/genetics , Antibodies, Neutralizing , SARS-CoV-2 , Pandemics , Prevalence , Seroepidemiologic Studies , COVID-19/epidemiology , Students
7.
Lett Appl Microbiol ; 75(5): 1225-1231, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2103163

ABSTRACT

Human adenoviruses (HAdVs) are prevalent worldwide and are a common cause of respiratory tract infection in people of all ages. However, little is known about HAdV infection among children with severe acute respiratory infection (SARI). The present study retrospectively analysed the molecular typing and epidemiological characteristics of HAdV-positive samples from children with SARI from January 2017 to December 2021 in Huzhou. The results showed that 89 (8·27%) of 1078 SARI paediatric patients were positive for HAdVs. Children <5 years of age accounted for 87·64% of the positive cases. The peak seasons for HAdV infection were the first quarter and the fourth quarter. In addition, HAdV-B and HAdV-C were circulating among paediatric patients with SARI, of which the B3 genotype (n = 30, 51·72%) was the most prevalent and was detected every year, indicating that B3 is the main epidemic strain in the Huzhou area, followed by C1 (n = 9, 15·52%), C2 (n = 7, 12·07%) and B7 (n = 5, 8·62%). These findings provide a benchmark for future epidemiology and prevention strategies for HAdVs.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Pneumonia , Respiratory Tract Infections , Humans , Child , Infant , Adenovirus Infections, Human/epidemiology , Retrospective Studies , Phylogeny , Adenoviruses, Human/genetics , Molecular Typing , Respiratory Tract Infections/epidemiology , Genotype , China/epidemiology , Molecular Epidemiology
8.
J Clin Virol ; 157: 105318, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2061479

ABSTRACT

BACKGROUND: Seasonal outbreaks of infectious conjunctivitis remain a public health issue. Determination of outbreak etiologies in the context of a worldwide pandemic may provide useful information to guide public health strategies. The aim of this study was to identify pathogens associated with outpatient infectious conjunctivitis during the COVID-19 Delta surge. METHODS: This prospective study was conducted from April 2021 to September 2021. All outpatients presenting to the Aravind Eye Center (Madurai, India) with signs and symptoms consistent with acute infectious conjunctivitis were eligible. Three swabs were obtained from each participant: one from each conjunctiva and one from the anterior nares. Samples were processed for metagenomic RNA deep sequencing (RNA-seq). RESULTS: Samples from 106 study participants were sequenced. The most common presenting symptoms were tearing (86%) and itching (71%). Preauricular lymphadenopathy was present in 38% of participants. 20% of participants had close contacts with similar symptoms. Systemic symptoms such as coughing, runny nose, vomiting or diarrhea were uncommonly reported. 60% of all participants used some medicated eye drops upon enrollment. 75% of study participants demonstrated infection with human adenovirus D (HAdV-D). 11% of conjunctivitis was associated with SARS-CoV-2. 15% had no definitive pathogen detected. 8% of all participants had codetection of more than one pathogen on RNA-seq. CONCLUSIONS: During the COVID-19 Delta surge in India, HAdV-D was the most common pathogen associated with infectious conjunctivitis. SARS-CoV-2 was the second most common associated pathogen. Seasonal surveillance may be necessary for the determination of emerging and reemerging pathogens responsible for infectious conjunctivitis.


Subject(s)
Adenoviruses, Human , COVID-19 , Conjunctivitis , Humans , SARS-CoV-2 , Prospective Studies , India/epidemiology , Conjunctivitis/epidemiology , Adenoviruses, Human/genetics , Acute Disease , High-Throughput Nucleotide Sequencing
9.
N Engl J Med ; 387(7): 620-630, 2022 08 18.
Article in English | MEDLINE | ID: covidwho-1991732

ABSTRACT

BACKGROUND: Human adenoviruses typically cause self-limited respiratory, gastrointestinal, and conjunctival infections in healthy children. In late 2021 and early 2022, several previously healthy children were identified with acute hepatitis and human adenovirus viremia. METHODS: We used International Classification of Diseases, 10th Revision, codes to identify all children (<18 years of age) with hepatitis who were admitted to Children's of Alabama hospital between October 1, 2021, and February 28, 2022; those with acute hepatitis who also tested positive for human adenovirus by whole-blood quantitative polymerase chain reaction (PCR) were included in our case series. Demographic, clinical, laboratory, and treatment data were obtained from medical records. Residual blood specimens were sent for diagnostic confirmation and human adenovirus typing. RESULTS: A total of 15 children were identified with acute hepatitis - 6 (40%) who had hepatitis with an identified cause and 9 (60%) who had hepatitis without a known cause. Eight (89%) of the patients with hepatitis of unknown cause tested positive for human adenovirus. These 8 patients plus 1 additional patient referred to this facility for follow-up were included in this case series (median age, 2 years 11 months; age range, 1 year 1 month to 6 years 5 months). Liver biopsies indicated mild-to-moderate active hepatitis in 6 children, some with and some without cholestasis, but did not show evidence of human adenovirus on immunohistochemical examination or electron microscopy. PCR testing of liver tissue for human adenovirus was positive in 3 children (50%). Sequencing of specimens from 5 children showed three distinct human adenovirus type 41 hexon variants. Two children underwent liver transplantation; all the others recovered with supportive care. CONCLUSIONS: Human adenovirus viremia was present in the majority of children with acute hepatitis of unknown cause admitted to Children's of Alabama from October 1, 2021, to February 28, 2022, but whether human adenovirus was causative remains unclear. Sequencing results suggest that if human adenovirus was causative, this was not an outbreak driven by a single strain. (Funded in part by the Centers for Disease Control and Prevention.).


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Hepatitis , Acute Disease , Adenovirus Infections, Human/complications , Adenovirus Infections, Human/diagnosis , Adenovirus Infections, Human/virology , Adenoviruses, Human/genetics , Child , Child, Preschool , Hepatitis/virology , Humans , Infant , Viremia
11.
World J Pediatr ; 18(8): 545-552, 2022 08.
Article in English | MEDLINE | ID: covidwho-1943236

ABSTRACT

BACKGROUND: Human adenovirus (HAdV) infection can cause a variety of diseases. It is a major pathogen of pediatric acute respiratory tract infections (ARIs) and can be life-threatening in younger children. We described the epidemiology and subtypes shifting of HAdV among children with ARI in Guangzhou, China. METHODS: We conducted a retrospective study of 161,079 children diagnosed with acute respiratory illness at the Guangzhou Women and Children's Medical Center between 2010 and 2021. HAdV specimens were detected by real-time PCR and the hexon gene was used for phylogenetic analysis. RESULTS: Before the COVID-19 outbreak in Guangzhou, the annual frequency of adenovirus infection detected during this period ranged from 3.92% to 13.58%, with an epidemic peak every four to five years. HAdV demonstrated a clear seasonal distribution, with the lowest positivity in March and peaking during summer (July or August) every year. A significant increase in HAdV cases was recorded for 2018 and 2019, which coincided with a shift in the dominant HAdV subtype from HAdV-3 to HAdV-7. The latter was associated with a more severe disease compared to HAdV-3. The average mortality proportion for children infected with HAdV from 2016 to 2019 was 0.38% but increased to 20% in severe cases. After COVID-19 emerged, HAdV cases dropped to 2.68%, suggesting that non-pharmaceutical interventions probably reduced the transmission of HAdV in the community. CONCLUSION: Our study provides the foundation for the understanding of the epidemiology of HAdV and its associated risks in children in Southern China.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , COVID-19 , Respiratory Tract Infections , Adenovirus Infections, Human/diagnosis , Adenovirus Infections, Human/epidemiology , Adenoviruses, Human/genetics , Child , China/epidemiology , Female , Humans , Infant , Molecular Epidemiology , Phylogeny , Respiratory Tract Infections/diagnosis , Retrospective Studies
12.
Methods Mol Biol ; 2511: 79-88, 2022.
Article in English | MEDLINE | ID: covidwho-1941368

ABSTRACT

Detection and mutation surveillance of SARS-CoV-2 are crucial for combating the COVID-19 pandemic. Here we describe a lab-based method for multiplex isothermal amplification-based sequencing and real-time analysis of multiple viral genomes. It can simultaneously detect SARS-CoV-2, influenza A, human adenovirus, and human coronavirus and monitor mutations for up to 96 samples in real time. The method proved to be rapid and sensitive (limit of detection: 29 viral RNA copies/µL of extracted nucleic acid) in detecting SARS-CoV-2 in clinical samples. We expect it to offer a promising solution for rapid field-deployable detection and mutational surveillance of pandemic viruses.


Subject(s)
COVID-19 , Coinfection , Nucleic Acid Amplification Techniques , SARS-CoV-2 , Adenoviruses, Human/genetics , COVID-19/diagnosis , Coinfection/diagnosis , Humans , Influenza A virus/genetics , Limit of Detection , Mutation , Nucleic Acid Amplification Techniques/methods , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
13.
Microbiol Spectr ; 10(4): e0051622, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1938011

ABSTRACT

Loop-mediated isothermal amplification (LAMP) is an alternative to PCR that is faster and requires fewer resources. Here, we describe two LAMP assays for the detection of human adenoviruses in the feces of children with acute intestinal infections. We designed сolorimetric LAMP (c-LAMP) and real-time LAMP (f-LAMP) with fluorescent probes to detect the DNA of the adenovirus F human adenovirus 40/41 (hAdV40/41) hexon gene. The detection limit of both developed methods was 103 copies/mL, which is comparable to the sensitivity of PCR. The specificities of both c-LAMP and f-LAMP were high, with no false-positive results for clinical samples that do not contain adenovirus F, when testing other viruses and microorganisms. Comparative tests of PCR and LAMP on clinical samples from patients with acute gastroenteritis were carried out. For all samples with a PCR threshold cycle (CT) of up to 36, the PCR and LAMP results completely coincided; however, at low viral loads, the diagnostic sensitivity of LAMP, especially c-LAMP with colorimetric detection, was inferior to that of PCR. The combination of LAMP with modern methods of nucleic acid extraction, both in manual and automatic modes, can reduce the time for a complete study, including extraction of nucleic acid material and amplification, to 60 min. IMPORTANCE In April 2022, several cases of acute hepatitis of unknown origin were reported in children from 12 countries. In many cases, enteric adenovirus or SARS-CoV-2 and adenovirus coinfection were detected. It is known that human adenoviruses can cause different infections of varying severity, from asymptomatic to severe cases with lethal outcomes. There is a need to increase the diagnostic capabilities of clinical laboratories to identify such an underestimated pathogen as adenovirus. Although PCR remains the gold standard for pathogen detection, this method requires specialized equipment and has a long turnaround time to process samples. Previously, LAMP assays for the detection of human adenovirus have been based on measuring the turbidity, the fluorescence of intercalated dyes, or electrophoretic separation. Herein, we present LAMP-based assays with colorimetric or fluorescent detection and perform a detailed assessment of their sensitivity, specificity, and diagnostic performance.


Subject(s)
Adenoviridae Infections , Adenoviruses, Human , COVID-19 , Nucleic Acids , Adenoviridae Infections/diagnosis , Adenoviruses, Human/genetics , Child , Feces , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques , SARS-CoV-2 , Sensitivity and Specificity
14.
PLoS Pathog ; 18(6): e1010588, 2022 06.
Article in English | MEDLINE | ID: covidwho-1902649

ABSTRACT

As intracellular parasites, viruses exploit cellular proteins at every stage of infection. Adenovirus outbreaks are associated with severe acute respiratory illnesses and conjunctivitis, with no specific antiviral therapy available. An adenoviral vaccine based on human adenovirus species D (HAdV-D) is currently in use for COVID-19. Herein, we investigate host interactions of HAdV-D type 37 (HAdV-D37) protein IIIa (pIIIa), identified by affinity purification and mass spectrometry (AP-MS) screens. We demonstrate that viral pIIIa interacts with ubiquitin-specific protease 9x (USP9x) and Ran-binding protein 2 (RANBP2). USP9x binding did not invoke its signature deubiquitination function but rather deregulated pIIIa-RANBP2 interactions. In USP9x-knockout cells, viral genome replication and viral protein expression increased compared to wild type cells, supporting a host-favored mechanism for USP9x. Conversely, RANBP2-knock down reduced pIIIa transport to the nucleus, viral genome replication, and viral protein expression. Also, RANBP2-siRNA pretreated cells appeared to contain fewer mature viral particles. Transmission electron microscopy of USP9x-siRNA pretreated, virus-infected cells revealed larger than typical paracrystalline viral arrays. RANBP2-siRNA pretreatment led to the accumulation of defective assembly products at an early maturation stage. CRM1 nuclear export blockade by leptomycin B led to the retention of pIIIa within cell nuclei and hindered pIIIa-RANBP2 interactions. In-vitro binding analyses indicated that USP9x and RANBP2 bind to C-terminus of pIIIa amino acids 386-563 and 386-510, respectively. Surface plasmon resonance testing showed direct pIIIa interaction with recombinant USP9x and RANBP2 proteins, without competition. Using an alternative and genetically disparate adenovirus type (HAdV-C5), we show that the demonstrated pIIIa interaction is also important for a severe respiratory pathogen. Together, our results suggest that pIIIa hijacks RANBP2 for nuclear import and subsequent virion assembly. USP9x counteracts this interaction and negatively regulates virion synthesis. This analysis extends the scope of known adenovirus-host interactions and has potential implications in designing new antiviral therapeutics.


Subject(s)
Adenoviridae Infections , Adenoviruses, Human , COVID-19 , Active Transport, Cell Nucleus , Adenoviridae/genetics , Adenoviruses, Human/genetics , Humans , Molecular Chaperones , Nuclear Pore Complex Proteins , RNA, Small Interfering , Ubiquitin Thiolesterase/genetics , Ubiquitin-Specific Proteases , Viral Proteins/genetics
15.
Tohoku J Exp Med ; 258(1): 23-27, 2022 Aug 04.
Article in English | MEDLINE | ID: covidwho-1892436

ABSTRACT

Virus genome mutation profiles with insertion, deletion, and point mutations have recently been revealed to differ remarkably between viruses. In RNA viruses like human coronaviruses or influenza viruses, genome samples collected over two to three decades usually show point mutations in 10-20% of the bases, while the rate of insertion and/or deletion mutations (indels) largely depends on the virus. This study evaluates the mutation profiles of DNA viruses by comparing a recently sampled genome of human adenovirus species C type 2 (isolate SG06/HAdvC2/2016) with a genome of the same species sampled in the 1970s. It was found insertions of 23 bases at seven sites and deletions of 22 bases at nine sites. The longest indels were 6-base insertions in E2B and L4. All indels in the coding regions were in-frame mutations with base lengths in multiples of three. In the non-coding regions, the lengths of the indels ranged from 1-4 consecutive bases. Long indels with more than 10 consecutive bases, which comprise nearly half of indels in the SARS-CoV-2 genome, were absent. In other sites, the point mutation rate was approximately 0.3%, which was significantly lower than in RNA viruses. In summary, the estimated point mutation rate in human adenovirus species C type 2 (HAdvC-2) was over 10 times lower than in RNA viruses. Unlike the relatively long indels in the SARS-CoV-2 genome, the indels in HAdvC-2 were short, with 6 or fewer consecutive bases.


Subject(s)
Adenoviruses, Human , Genome, Viral , SARS-CoV-2 , Adenoviruses, Human/genetics , INDEL Mutation , Point Mutation , SARS-CoV-2/genetics
17.
Viruses ; 14(2)2022 02 17.
Article in English | MEDLINE | ID: covidwho-1786043

ABSTRACT

Various adenoviruses are being used as viral vectors for the generation of vaccines against chronic and emerging diseases (e.g., AIDS, COVID-19). Here, we report the improved capsid structure for one of these vectors, human adenovirus D26 (HAdV-D26), at 3.4 Å resolution, by reprocessing the previous cryo-electron microscopy dataset and obtaining a refined model. In addition to overall improvements in the model, the highlights of the structure include (1) locating a segment of the processed peptide of VIII that was previously believed to be released from the mature virions, (2) reorientation of the helical appendage domain (APD) of IIIa situated underneath the vertex region relative to its counterpart observed in the cleavage defective (ts1) mutant of HAdV-C5 that resulted in the loss of interactions between the APD and hexon bases, and (3) the revised conformation of the cleaved N-terminal segments of pre-protein VI (pVIn), located in the hexon cavities, is highly conserved, with notable stacking interactions between the conserved His13 and Phe18 residues. Taken together, the improved model of HAdV-D26 capsid provides a better understanding of protein-protein interactions in HAdV capsids and facilitates the efforts to modify and/or design adenoviral vectors with altered properties. Last but not least, we provide some insights into clotting factors (e.g., FX and PF4) binding to AdV vectors.


Subject(s)
Adenoviruses, Human/chemistry , Capsid/chemistry , Capsid/ultrastructure , Cryoelectron Microscopy/methods , Adenoviruses, Human/genetics , Capsid Proteins/genetics , Humans , Models, Molecular , Protein Conformation , Protein Interaction Domains and Motifs , Virus Assembly , Virus Internalization
18.
Viruses ; 14(3)2022 03 06.
Article in English | MEDLINE | ID: covidwho-1765949

ABSTRACT

Gene therapy and vaccine development need more novel adenovirus vectors. Here, we attempt to provide strategies to construct adenovirus vectors based on restriction-assembly for researchers with little experience in this field. Restriction-assembly is a combined method of restriction digestion and Gibson assembly, by which the major part of the obtained plasmid comes from digested DNA fragments instead of PCR products. We demonstrated the capability of restriction-assembly in manipulating the genome of simian adenovirus 1 (SAdV-1) in this study. A PCR product of the plasmid backbone was combined with SAdV-1 genomic DNA to construct an infectious clone, plasmid pKSAV1, by Gibson assembly. Restriction-assembly was performed repeatedly in the steps of intermediate plasmid isolation, modification, and restoration. The generated adenoviral plasmid was linearized by restriction enzyme digestion and transfected into packaging 293 cells to rescue E3-deleted replication-competent SAdV1XE3-CGA virus. Interestingly, SAdV1XE3-CGA could propagate in human chronic myelogenous leukemia K562 cells. The E1 region was similarly modified to generate E1/E3-deleted replication-defective virus SAdV1-EG. SAdV1-EG had a moderate gene transfer ability to adherent mammalian cells, and it could efficiently transduce suspension cells when compared with the human adenovirus 5 control vector. Restriction-assembly is easy to use and can be performed without special experimental materials and instruments. It is highly effective with verifiable outcomes at each step. More importantly, restriction-assembly makes the established vector system modifiable, upgradable and under sustainable development, and it can serve as the instructive method or strategy for the synthetic biology of adenoviruses.


Subject(s)
Adenoviruses, Human , Adenoviruses, Simian , Adenoviridae/genetics , Adenoviruses, Human/genetics , Adenoviruses, Simian/genetics , Animals , DNA , Genetic Vectors/genetics , Humans , Mammals
19.
Cells ; 11(5)2022 03 01.
Article in English | MEDLINE | ID: covidwho-1742339

ABSTRACT

To develop adenoviral cell- or tissue-specific gene delivery, understanding of the infection mechanisms of adenoviruses is crucial. Several adenoviral attachment proteins such as CD46, CAR and sialic acid have been identified and studied. However, most receptor studies were performed on non-human cells. Combining our reporter gene-tagged adenovirus library with an in vitro human gene knockout model, we performed a systematic analysis of receptor usage comparing different adenoviruses side-by-side. The CRISPR/Cas9 system was used to knockout CD46 and CAR in the human lung epithelial carcinoma cell line A549. Knockout cells were infected with 22 luciferase-expressing adenoviruses derived from adenovirus species B, C, D and E. HAdV-B16, -B21 and -B50 from species B1 as well as HAdV-B34 and -B35 were found to be CD46-dependent. HAdV-C5 and HAdV-E4 from species E were found to be CAR-dependent. Regarding cell entry of HAdV-B3 and -B14 and all species D viruses, both CAR and CD46 play a role, and here, other receptors or attachment structures may also be important since transductions were reduced but not completely inhibited. The established human knockout cell model enables the identification of the most applicable adenovirus types for gene therapy and to further understand adenovirus infection biology.


Subject(s)
Adenoviridae Infections , Adenoviruses, Human , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , Cell Communication , Cell Line , Gene Library , Humans
20.
Rev Med Virol ; 32(6): e2338, 2022 11.
Article in English | MEDLINE | ID: covidwho-1739229

ABSTRACT

Due to their nature, adenoviruses have been recognised as promising candidates for vaccine vector development. Since they mimic natural infection, recombinant adenovirus vectors have been proven as ideal shuttles to deliver foreign transgenes aiming at inducing both humoral and cellular immune response. In addition, a potent adjuvant effect can be exerted due to the adenovirus inherent stimulation of various elements of innate and adaptive immunity. Due to its low seroprevalence in humans as well as induction of favourable immune response to inserted transgene, human adenovirus type 26 (HAdV-D26) has been recognised as a promising platform for vaccine vector development and is studied in number of completed or ongoing clinical studies. Very recently HAdV-D26 based Ebola and Covid-19 vaccines were approved for medical use. In this review, current state of the art regarding HAdV-D26 basic biology and its usage as vaccine vector will be discussed.


Subject(s)
Adenoviruses, Human , COVID-19 , Vaccines , Humans , Adenoviruses, Human/genetics , Seroepidemiologic Studies , COVID-19 Vaccines , Adenoviridae/genetics , Genetic Vectors/genetics , Biology
SELECTION OF CITATIONS
SEARCH DETAIL